Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Exercising Spatiotemporal Control of Cell Attachment with Optically Transparent Microelectrodes

Identifieur interne : 006757 ( Main/Repository ); précédent : 006756; suivant : 006758

Exercising Spatiotemporal Control of Cell Attachment with Optically Transparent Microelectrodes

Auteurs : RBID : Pascal:08-0359351

Descripteurs français

English descriptors

Abstract

This paper describes a novel approach of controlling cell-surface interactions through an electrochemical "switching" of biointerfacial properties of optically transparent microelectrodes. The indium tin oxide (ITO) microelectrodes, fabricated on glass substrates, were modified with poly(ethylene glycol) (PEG) silane to make glass and ITO regions resistant to protein and cell adhesion. Cyclic voltammetry, with potassium ferricyanide serving as a redox reporter molecule, was used to monitor electron transfer across the electrolyte-ITO interface. PEG silane modification of ITO correlated with diminished electron transfer, judged by the disappearance of ferricyanide redox activity. Importantly, application of reductive potential (-1.4 V vs Ag/AgCl reference) corresponded with reappearance of typical ferricyanide redox peaks, thus pointing to desorption of an insulating PEG silane layer. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) characterization of the silanized ITO surfaces after electrical stimulation indicated complete removal of the silane layer. Significantly, electrical stimulation allowed to "switch" chosen electrodes from nonfouling to protein-adhesive while leaving other ITO and glass regions protected by a nonfouling PEG silane layer. The spatial and temporal control of biointerfacial properties afforded by our approach was utilized to micropattern proteins and cells and to construct micropatterned co-cultures. In the future, control of the biointerfacial properties afforded by this novel approach may allow the organization of multiple cell types into precise geometric configurations in order to create better in vitro mimics of cellular complexity of the native tissues.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:08-0359351

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Exercising Spatiotemporal Control of Cell Attachment with Optically Transparent Microelectrodes</title>
<author>
<name sortKey="Shah, Sunny S" uniqKey="Shah S">Sunny S. Shah</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Biomedical Engineering, University of California</s1>
<s2>Davis</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Davis</wicri:noRegion>
</affiliation>
</author>
<author>
<name>JI YOUN LEE</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Biomedical Engineering, University of California</s1>
<s2>Davis</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Davis</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Verkhoturov, Stanislav" uniqKey="Verkhoturov S">Stanislav Verkhoturov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Chemistry, Texas A&M University</s1>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Department of Chemistry, Texas A&M University</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tuleuova, Nazgul" uniqKey="Tuleuova N">Nazgul Tuleuova</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Biomedical Engineering, University of California</s1>
<s2>Davis</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Davis</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>National Center for Biotechnology</s1>
<s2>Astana</s2>
<s3>KAZ</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Kazakhstan</country>
<wicri:noRegion>National Center for Biotechnology</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schweikert, Emile A" uniqKey="Schweikert E">Emile A. Schweikert</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Chemistry, Texas A&M University</s1>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Department of Chemistry, Texas A&M University</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ramanculov, Erlan" uniqKey="Ramanculov E">Erlan Ramanculov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>National Center for Biotechnology</s1>
<s2>Astana</s2>
<s3>KAZ</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Kazakhstan</country>
<wicri:noRegion>National Center for Biotechnology</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Revzin, Alexander" uniqKey="Revzin A">Alexander Revzin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Biomedical Engineering, University of California</s1>
<s2>Davis</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Davis</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">08-0359351</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 08-0359351 INIST</idno>
<idno type="RBID">Pascal:08-0359351</idno>
<idno type="wicri:Area/Main/Corpus">006691</idno>
<idno type="wicri:Area/Main/Repository">006757</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0743-7463</idno>
<title level="j" type="abbreviated">Langmuir</title>
<title level="j" type="main">Langmuir</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adhesion</term>
<term>Characterization</term>
<term>Cyclic voltammetry</term>
<term>Desorption</term>
<term>Electrochemistry</term>
<term>Electrodes</term>
<term>Electrolyte</term>
<term>Electron transfer</term>
<term>Ethylene oxide polymer</term>
<term>Glass</term>
<term>Indium oxide</term>
<term>Interface</term>
<term>Microelectrode</term>
<term>Modification</term>
<term>Organization</term>
<term>Potassium</term>
<term>Potential</term>
<term>Protein</term>
<term>Reference</term>
<term>Secondary ion mass spectrometry</term>
<term>Silane</term>
<term>Substrate</term>
<term>Tin oxide</term>
<term>Transition element compounds</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Microélectrode</term>
<term>Electrochimie</term>
<term>Oxyde d'indium</term>
<term>Oxyde d'étain</term>
<term>Verre</term>
<term>Substrat</term>
<term>Ethylène oxyde polymère</term>
<term>Silane</term>
<term>Protéine</term>
<term>Adhérence</term>
<term>Voltammétrie cyclique</term>
<term>Potassium</term>
<term>Transfert électron</term>
<term>Electrolyte</term>
<term>Interface</term>
<term>Modification</term>
<term>Potentiel</term>
<term>Composé de métal de transition</term>
<term>Référence</term>
<term>Désorption</term>
<term>Spectrométrie SIMS</term>
<term>Caractérisation</term>
<term>Electrode</term>
<term>Organisation</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Verre</term>
<term>Potassium</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper describes a novel approach of controlling cell-surface interactions through an electrochemical "switching" of biointerfacial properties of optically transparent microelectrodes. The indium tin oxide (ITO) microelectrodes, fabricated on glass substrates, were modified with poly(ethylene glycol) (PEG) silane to make glass and ITO regions resistant to protein and cell adhesion. Cyclic voltammetry, with potassium ferricyanide serving as a redox reporter molecule, was used to monitor electron transfer across the electrolyte-ITO interface. PEG silane modification of ITO correlated with diminished electron transfer, judged by the disappearance of ferricyanide redox activity. Importantly, application of reductive potential (-1.4 V vs Ag/AgCl reference) corresponded with reappearance of typical ferricyanide redox peaks, thus pointing to desorption of an insulating PEG silane layer. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) characterization of the silanized ITO surfaces after electrical stimulation indicated complete removal of the silane layer. Significantly, electrical stimulation allowed to "switch" chosen electrodes from nonfouling to protein-adhesive while leaving other ITO and glass regions protected by a nonfouling PEG silane layer. The spatial and temporal control of biointerfacial properties afforded by our approach was utilized to micropattern proteins and cells and to construct micropatterned co-cultures. In the future, control of the biointerfacial properties afforded by this novel approach may allow the organization of multiple cell types into precise geometric configurations in order to create better in vitro mimics of cellular complexity of the native tissues.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0743-7463</s0>
</fA01>
<fA02 i1="01">
<s0>LANGD5</s0>
</fA02>
<fA03 i2="1">
<s0>Langmuir</s0>
</fA03>
<fA05>
<s2>24</s2>
</fA05>
<fA06>
<s2>13</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Exercising Spatiotemporal Control of Cell Attachment with Optically Transparent Microelectrodes</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SHAH (Sunny S.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>JI YOUN LEE</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>VERKHOTUROV (Stanislav)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>TULEUOVA (Nazgul)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>SCHWEIKERT (Emile A.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>RAMANCULOV (Erlan)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>REVZIN (Alexander)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Biomedical Engineering, University of California</s1>
<s2>Davis</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Chemistry, Texas A&M University</s1>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>National Center for Biotechnology</s1>
<s2>Astana</s2>
<s3>KAZ</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>6837-6844</s1>
</fA20>
<fA21>
<s1>2008</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>20642</s2>
<s5>354000197539700610</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2008 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>08-0359351</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Langmuir</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fA99>
<s0>ref. et notes dissem.</s0>
</fA99>
<fC01 i1="01" l="ENG">
<s0>This paper describes a novel approach of controlling cell-surface interactions through an electrochemical "switching" of biointerfacial properties of optically transparent microelectrodes. The indium tin oxide (ITO) microelectrodes, fabricated on glass substrates, were modified with poly(ethylene glycol) (PEG) silane to make glass and ITO regions resistant to protein and cell adhesion. Cyclic voltammetry, with potassium ferricyanide serving as a redox reporter molecule, was used to monitor electron transfer across the electrolyte-ITO interface. PEG silane modification of ITO correlated with diminished electron transfer, judged by the disappearance of ferricyanide redox activity. Importantly, application of reductive potential (-1.4 V vs Ag/AgCl reference) corresponded with reappearance of typical ferricyanide redox peaks, thus pointing to desorption of an insulating PEG silane layer. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) characterization of the silanized ITO surfaces after electrical stimulation indicated complete removal of the silane layer. Significantly, electrical stimulation allowed to "switch" chosen electrodes from nonfouling to protein-adhesive while leaving other ITO and glass regions protected by a nonfouling PEG silane layer. The spatial and temporal control of biointerfacial properties afforded by our approach was utilized to micropattern proteins and cells and to construct micropatterned co-cultures. In the future, control of the biointerfacial properties afforded by this novel approach may allow the organization of multiple cell types into precise geometric configurations in order to create better in vitro mimics of cellular complexity of the native tissues.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001C01I</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001C01J</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001C01H</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Microélectrode</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Microelectrode</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Microeléctrodo</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Electrochimie</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Electrochemistry</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Electroquímica</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Oxyde d'étain</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Tin oxide</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Estaño óxido</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Verre</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Glass</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Vidrio</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Substrat</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Substrate</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Substrato</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Ethylène oxyde polymère</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Ethylene oxide polymer</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Etileno óxido polímero</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Silane</s0>
<s2>NK</s2>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Silane</s0>
<s2>NK</s2>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Silano</s0>
<s2>NK</s2>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Protéine</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Protein</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Proteína</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Adhérence</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Adhesion</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Adherencia</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Voltammétrie cyclique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Cyclic voltammetry</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Voltametría cíclica</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Potassium</s0>
<s2>NC</s2>
<s2>FR</s2>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Potassium</s0>
<s2>NC</s2>
<s2>FR</s2>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Potasio</s0>
<s2>NC</s2>
<s2>FR</s2>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Transfert électron</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Electron transfer</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Transferencia electrón</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Electrolyte</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Electrolyte</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Electrólito</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Interface</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Interface</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Interfase</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Modification</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Modification</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Modificación</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Potentiel</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Potential</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Potencial</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Composé de métal de transition</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Transition element compounds</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Référence</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Reference</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Referencia</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Désorption</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Desorption</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Desorción</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Spectrométrie SIMS</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Secondary ion mass spectrometry</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Espectrometría SIMS</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Caractérisation</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Characterization</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Caracterización</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Electrode</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Electrodes</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Electrodo</s0>
<s5>23</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Organisation</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Organization</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Organización</s0>
<s5>24</s5>
</fC03>
<fN21>
<s1>224</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 006757 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 006757 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:08-0359351
   |texte=   Exercising Spatiotemporal Control of Cell Attachment with Optically Transparent Microelectrodes
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024